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Let k be a field, and let V, W be vector spaces over k (and unless other-
wise specified, this will be the ground field for all other vector spaces discussed
onward). A tensor product of V and W is a pair (X, f), where X is a vector
space and f is a bilinear map V ×W → X, satisfying the following “universal”
property: for any bilinear map g : V ×W 7→ Y into another (possibly the same)
vector space Y , there exists a unique linear map h : X 7→ Y such that f = h◦g.
This is to say that every bilinear map from V × W into any arbitrary vector
space “factors through” X.
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We now point a couple things out. Firstly, the definition alone says nothing
about whether or not such an object exists. In a moment, however, we will
provide a working construction. Secondly, it turns out that if (X1, f1) and
(X2, f2) are two tensor products of V andW , they are guaranteed to be the same
up to “unique isomorphism”. What that means is that we can guarantee there
exists an isomorphism F : X1 → X2 such that f2 = F ◦ f1 and f1 = f2 ◦ F−1,
and moreover, we can guarantee that this isomorphism is unique. Because of
this, it is common to speak of the tensor product between V and W , as any two
different tensor products will have a unique isomorphism between them. Well
actually, I must admit that the last sentence was not at all obvious to me when
first learning about the tensor product. Sure, if two groups are isomoprhic,
then one is just a “relabeling” of the other and thus they are for all intensive
purposes the same. But in linear algebra, all vector spaces of the same dimension
are isomorphic to each other (and thus we care about more), so existence of an
isomorphism alone doesn’t really tell us much. Thus it must be the “unique”
part in “unique isomorphism” that is really important, and indeed it is. I can’t
tell you any more though, I’m just as confused.

The standard convention is to denote the tensor product of V and W as
V ⊗ W , and so we do onwards. Moreover, it is also convention to denote the
corresponding bilinear map as ⊗, and the function evaluation ⊗(v, w) as v⊗w.
That last sentence can lead to initial confusion, but makes the notation a lot
easier going forward (but it takes a long time to get an inuitive feel for why
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this choice is made, so don’t beat yourself up too much if you are confused at
first), so take a moment to internalize it. Let’s now prove the previously stated
“unique up to unique isomoprhism property”. If (X1, f1) and (X2, f2) are two
tensor products of V and W , then the universal property gives us unique maps
g1 : X2 → X1 and a map g2 : X1 → X2 so that f1 = g1 ◦ f2 and f2 = g2 ◦ f1.
One deduces that g1 = g−1

2 , and moreover uniqueness is already established, so
we are done.

Now for the construction. We will provide two constructions, and this first
one will be require a choice of basis and assumes that V and W are finite
dimensional, while the second one does neither. The first is included to provide
more intuition as to what a tensor product actually looks like.

Let BV = {v1, . . . , vm} and BW = {w1, . . . , wn} be the two respective bases
for V and W . Then, the set of formal linear combinations1 (where scalars are
taken from the field k) of the mn elements {vi ⋆ wj | vi ∈ BV , wj ∈ BW } is
the tensor product V ⊗ W , with the bilinear map given by ⊗(v, w) = v ⋆ w.
Effectively, v ⋆ w = v ⊗ w. If g : V × W → Z is a bilinear map into a vector
space Z, we must show there exists a unique h : Z → V ⊗W such that ⊗ = h◦g.
All we have to do is make h send g(vi, wj) 7→ vi ⊗ wj , and the rest of the map
becomes determined by linearity. Thus this construction is indeed the tensor
product.

For our second construction, start with the free vector space U on V ×W .
That is, elements of U are (unique linear combinations) of the form∑

(v,w)∈V×W

c(x,y)(x, y)

where c(x,y) ∈ k are scalars, and all but finite of them being nonzero (linear
combinations must be a sum of a finite number of vectors). Now let U0 ⊂ U be
the subspace spanned by elements of the form

(x, y) + (x, y′)− (x, y + y′)

(x, y) + (x′, y)− (x+ x′, y)

λ(x, y)− (λx, y)

λ(x, y)− (x, λy)

for x, x′ ∈ V , y, y′ ∈ W , and λ ∈ k. Quotient U out by this set gives us the
tensor product. That is, U/U0

∼= V ⊗W .
We start out with the large vector space U = {v⊗w | v ∈ V,w ∈ W} (before

we used ⋆ for clarity, but now we are beginning with ⊗ and thus implicitely
defining the bilinear map f). Let U0 ⊂ U be the subspace spanned by the

1this is known as the free vector space on the set BV × BW
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elements

U0 =⟨λv ⊗ w − λ(v ⊗ w),

v ⊗ λw − λ(v ⊗ w),

(u+ v)⊗ w − u⊗ w − v ⊗ w

u⊗ (w + x)− u⊗ w − u⊗ x⟩

taken over all u, v ∈ V , w, x ∈ W , and λ ∈ k. If we quotient U under this
set (or “mod out the relations”), the resulting set is the tensor product, or
V ⊗W = U/U0.
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