
Munkres Notes I Guess

Let X be a set, and let τ ⊂ P(X) be a collection of subsets of X. We
say that τ is a topology on X if the following three conditions are satisfied:

1. ∅ and X are in τ .

2. The union of the elements of any subcollection of τ i in τ .

3. The intersection of the elements of any finite subcollection of τ is in
τ .

The tuple (X, τ) is known as a topological space, but when contex is
clear, we manytimes refer to X as a topological space. The members of
τ are called open sets. The topology of all subsets of X is known as the
discrete topology and the topology τ = {∅, X} is known as the indiscrete
topology.

The finite complement topology τf is the collection of all subsets U
of X such that X − U is either finite or all of X. Why is this a topology?
Clearly ∅ ∈ τ since X − ∅ = X, and X ∈ τ since X − X = ∅ is finite.
Moreover, if {Uα} is an indexed family of nonempty elements of τf , then by
De Morgan’s Law,

X −
⋃

Uα =
⋂

(X − Uα)

is finite since each X − Uα is finite, so
⋃
Uα ∈ τf . Moreover, if U1, . . . , Un

are nonempty elements of τf , then

X −
n⋂

i=1

Ui =

n⋃
i=1

(X − Ui)

which is a finite union of finite sets, hence finite, so
⋂n

i=1 Ui ∈ τf . In the
case that we chose empty elements for any of the Ui or Uα, the RHS would
either be all of X or what it would be with the empty elements removed
from the family.

Suppose that τ and τ ′ are two topologies on a given set X. Then we say
that τ ′ is finer than τ if τ ′ ⊇ τ ; if τ ′ properly contains τ , then we say that τ ′
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is strictly finer than τ . We also say that τ is coarser and strictly coarser
than τ ′ in these two respective situations. We say that τ is comparable
with τ ′ if either τ ′ ⊂ τ or τ ⊂ τ ′. Note that the collection of all topologies on
a set forms a partially ordered set by inclusion, and not a totally ordered set
totally ordered set since not all topologies are comparable. Sometimes we
use the terms larger and smaller instead of finer and coarser, respectively.

It is convenient to explicitely specify all open sets of a topology τ . For-
tunately, we have a way of specifying a small number of subsets of X and
definining a topology in terms of them.

A basis for a topology on X is a collection B ⊂ P(X) of subsets of X
(called basis elements) such that:

1. For each x ∈ X there is at least one basis element B containing x.

2. If x belongs to the intersection of two basis elements B1 and B2, then
there is a basis element B3 containing x such that B3 ⊂ B1 ∩B2.

If B satisfies these two conditions, we define the topology τ generated by
B as follows: a subset U of X is said to be open in X (an element of τ) if
for each x ∈ U there exists a basis element B ∈ B such that x ∈ B ⊂ U .
Note that each basis element is itself open in τ .

Let’s now prove that the collection of subsets specified above is actually
a topology. ∅ is vacously open, and X is open since for every x ∈ X there
exists a B ∈ B such that x ∈ B ⊂ X. If {Uα} is a collection of open sets,
then for the set

U =
⋃

Uα,

for every x ∈ U there exists a Uα containing x, and since Uα is open, there
exists a B ∈ B such that x ∈ B ⊂ Uα ⊂ U , so U is open. Moreover, if U1 and
U2 are two open sets, then for the set U1 ∩ U2, for every x ∈ U1 ∩ U2, there
exists B1, B2 ∈ B such that x ∈ B1 ⊂ U1 and x ∈ B2 ⊂ U2. By property (2)
we are guaranteed the existence of a B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2,
and since, B1 ∩ B2 ⊂ U1 ∩ U2, we get that U1 ∩ U2 is an open set. Now,
for open sets U1, . . . , Un, we can easily inductively extend this to show that
U1 ∩ . . . Un is open.

It is important to note that if τ is the topology generated by a basis B,
then τ equals the collection of all unions of elements of B. Why? If U is an
open set in the topology generated by B, then for each x ∈ U there exists a
Bx ∈ B such that x ∈ Bx ⊂ U , so U =

⋃
x∈U Bx is a union of elements of

B. Conversely, if U =
⋃
Bα, clearly U is open (in the topology generated

by B) since it is the union of a collection of open sets.
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We have described how to go from a basis to the topology it generates.
How about the reverse direction: from a topology to a basis generating it?
We answer this question below.

For a topological space X, suppose that C is a collection of open sets of
X such that for each open set U of X and each x in U , there is an element
C of C such that x ∈ C ⊂ U . Then C is a basis for the topology of X. Why?
We first must show that C is actually a basis, and then that the topology τ ′

generated by C is equal to τ . The first condition of being a basis is satisfied
since for the open set X, for each x ∈ X we are told there exists a C ∈ C
such that x ∈ C ⊂ X. Moreover, if C1, C2 ∈ C, the set C1 ∩C2 is open since
C1 and C2 are open, so by hypothesis, for every x ∈ C1 ∩ C2 there exists
a C3 ∈ C such that x ∈ C3 ⊂ C1 ∩ C2. Thus this is a valid basis. Does
it generate τ though? That is, is the topology τ ′ generated by C equal to
τ? Let U be an open set of X. Then for each u ∈ U there exists Cu ∈ C
such that u ∈ Cu ∈ U , so U =

⋃
u∈U Cu and is thus open in τ ′ as well.

Conversely, suppose that U is open in τ ′. Then U =
⋃
Cα for some family

of basis elements {Cα} (we just proved this). This is a union of open sets in
X, and is thus open in τ .

Given two topologies on a set and their respective bases, how should we
go about comparing if one is finer than the other?

Let B and B′ be bases for the topologies τ and τ ′, respectively, on the
set X. Then the following are equivalent:

1. τ ′ is finer than τ .

2. For each x ∈ X and each basis element B ∈ B containing x, there
exists a basis element B′ ∈ B′ such that x ∈ B′ ⊂ B.

( =⇒ ): If we are given an x ∈ X and a B ∈ B containing x, then B is also
open in τ ′, so there exists B′ ∈ B′ such that x ∈ B′ ⊂ B.
( ⇐= ): This means that every B ∈ B is open in τ ′, so clearly τ is contained
in τ ′.

Note this means that the topology on R2 generated by the basis of open
balls is the same as the topology generated by rectangles.

The standard topology on the real line is the topology generated by
all

(a, b) = {x | a < x < b}.

———————–
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Let X,Y be topological spaces and let f, f ′ : X → Y be continuous
maps. We say that f is homotopic to f ′ if there is a continuous map
X × I → Y such that

F (x, 0) = f(x) and F (x, 1) = f ′(x)

for each x. (Here I = [0, 1]). The map F is called a homotopy between
f and f ′. If f is homotopic to f ′, we write f ≃ f ′. If f ≃ f ′ and f ′ is a
constant map, we say that f is nullhomotopic.

Recall that a path from point x0 to point x1 is a continuous map f :
[0, 1] → X such that f(0) = x0 and f(1) = x1. We call x0 the initial point
of the path and x1 the final point.

Two paths f and f ′ are said to be path homotopic if they have the
same inital and final point x0 and x1, and if there exists a continuous map
F : I × I → X such that

F (s, 0) = f(s) and F (s, 1) = f ′(s)

F (0, t) = x0 and F (1, t) = x1

We call F a path homotopy between f and f ′ and write f ≃p f
′. The first

condition says that F is a homotopy between f and f ′, and the second con-
dition says that each path ft(x) = F (x, t) is from x0 to x1. In other words,
the first condition says that F represents a continuous way of deforming the
path f to the path f ′, and the second condition says that the end points of
the path remain fixed during the deformation.

We now show that ≃ and ≃p are equivalence relations:
For a given f , F (x, t) = f(x) is a homotopy from f to f . It is continuous
as it is the projection map of f from X × I into X. If f is a path , F also
satisfies the second path-homotopy condition and is thus a path homotopy
as well.
Given f ≃ f ′, we show that f ′ ≃ f . If F is the between f and f ′, then
F ′(x, t) = F (x, 1 − t) is a homotopy between f ′ and f . If F is a path
homotopy, then so is F ′.
If f ≃ f ′ and f ′ ≃ f ′′, we will show that f ≃ f ′′. Let F be a homotopy
between f and f ′, and let G be a homotopy between f ′ and f ′′. Then the
function

H(x, t) =

{
F (x, 2t) 0 ≤ t ≤ 1

2

G(x, 2t− 1) 1
2 ≤ t ≤ 1

(1)

is a homotopy between f and f ′′. It is well defined at x = 1
2 as F (x, 1) =

f ′(x) = G(x, 0), and continuity follows from the pasting lemma. If F and G
are path homotopies, then it is easy to see that H is also a path homotopy.
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