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1 9/16/22, Friday

If G is an abelian group, and a € G, there exists a homomorphism Z — G
(n + na). There are two possibilities for «: if the map is injective, then « has
infinite order, Else, ker(¢) = nZ where n is the smallest positive integer such
that na = 0. We say a has order n.

IF k is a field, there exists a field (ring) homomorphism ¢ : Z - k (n—n-1=
14 ---+1). If ¢ is injective, we say k has characteristic 0 (e.g. Z,Q,C). If
ker(¢) # {0}, observe that the order n of an element must be a prime p. Field
homomorphisms preserve characteristics.

Let k be a field, V' a vector space with respect to k is defined by the operations
VxX—=>VandkxV —>V.

For example, k" = {(a1,...,a,) : a; € k} is a vector space over k for any
positive integer n.

More generally, if S is any set, then the set {maps S — k} is a vector space. In
the example above, we can think of S = {1,...,n}. If S =N, then {maps S —
k} = k[[z]], the “set of power series in k”.

We define W C V as a subspace if it is closed under additional and scalar
multiplication. Observe that given two subspace W, W', then W N W’ is also a
subspace.

We define a vector space homomorphism (linear map) of two vector space over
k as amap ¢ : V — W that respects +, x:

P(v+1') = ¢(v) + ¢(v')
P(Av) = Ag(v)
Note that subfields form vector space over their “parent” field.
Let S C V, then we can define
S = smallest subspace W CV: W > S

,eg. if S = {v1,...,0,}, then S = {a1v1 + -+ + ayv, € V]a; € K}. This is
called the span of S.
Definition: We say that S C V is linearly independent if

aiv1+ - +apv, =0 a;, =0 Vi

We say that S is a basis for V' if both are true: S is lineraly independent and
S=V.
Another way to say all of these things: given a set S = {vy...v,} C V, then
there exists a homomorphism

k" — oV

(aty...,ap) — Zaivi



Now we can say that S spans V if ¢ is surjective, linearly independent if ¢ is
injective, and a basis of ¢ is an isomorphism.
For example, if V = k™ = {(a1,...,an)|a; € k} has “standard basis”

e;=(0,...,0,1,0,...,0),

where there is a 1 in the i*" position and 0 everywhere else. For example, if k[z]
has basis {1, 2,22,...}, can you find a basis for k[[x]] (hint: you need the axiom
of choice) ?

Observe, if S = {v1,...,v,} C V is a finite spanning set, then 35" C S: 5" is a
basis.

The condition v4, ..., v, is not a basis means

Aar,...,an) #0:a1v1 + ... apv, =0

Say a; # 0, then

—1

vj = — (@v1+ -+ apvy) .

a;
This shows that v; is a linear combination of {v;};2;. We can keep removing
these linear dependence relations until we get a basis.
Proposition: If V' is a vector space, and two bases {v1, ..., v} and {wy, ..., w,},
then m = n, so we can say V has dimension n.

Proof. If S is a basis for V,
S" € S = 9 islin. ind. but doesn’t span

S C S’ = spans, but not lin. ind.

This is the same as saying the proper subset or proper superset of a basis is not
a basis. We now claim, ... I give up this is the same proof from Axler. O

Given vector spaces V, W over k, then we define
VxW:={(v,w):veV,WeW}

where the operations are defined in their obvious way (component-wise). Ob-
serve that dim V' x W = dim V+dim W, as (v1,0), ..., (vm,0), (0,w1), ..., (0,w,)
is a basis for V- x W.

Define
Hom(V,W) ={¢:V — W : ¢ is a homomorphism}
where
oV > W
(@ +9)(v) = d(v) + 9 (v)

(Ap)(v) = Ag(v)
Notice that
dim Hom(V, W) = dim V - dim W



We now define V*, the dual vector space of V', as
V* = {linear maps (hom.) : V'— k} = Hom(V, k)
Claim: Let vq,...,v, be a basis for V, and wy,...,w, for W. Then Vi =
1,....,m, j=1,...,n define
ij(0i) = w;

Gij(ve) =0 k#1i
Show that ¢;; forms a basis for Hom(V, W)

2 9/19/22, Monday

Review: Any linearly independent subset S C V can be enlarged to a basis.
Any spanning set contains a basis.

Proposition: For a linear map ¢ : V — W from a finite dimensional vector
space to another finite dimensional vector space, we have that

dim ker(¢) + dimim(¢) = dim V'

Proof. Say dimV = n,dim W = n, choose a basis vy, ..., vy for ker(¢) C V, and
enlarge this basis to vy, ..., v,, € V. The crucial claim is that ¢(vgi1), ..., @(vm)
form a basis for im(¢). Prove this as an exercise, or see Axler. O

Define rank(¢) := dimim(¢) = m — dimker(¢), then the above can be
restated as the rank plus the “nullity” is the dimension of the domain for a
linear map.

Given V C W over a field K, we can form the quotient space

W/V := quotient as abelian group

with the operation
ExW/V - W/V

for scalar multiplication. For an example, think of V = R? and W C V as the
line y = x. Then the set of cosets of W in V are all the lines parallel to W.
Note that (prove that): A-V = AV.

Note that we have a similar correspondence as we did with groups:

{subspaces of W/V} <= {subspaces of W that contain V'}

Now we talk about direct sums/products. Say Vi, ..., V,, are vector spaces over
K, then we can define

@Va :HVa ={(v1,...,0n) : Vo € Vo

Side Note: If there is an oo collection of V,,, then [V, = {(v1,v2,...) :
Vo € Vo } and @V, = {same thing but all but finitely many v, = 0}.



If Vi,...,V, € W are subspaces, then we say Vi,...,V, span W if any
w € W can be written as

W= a1V1 *** + ApUpn, Vo € Vg

We add the additional condition that these vectors must be linearly independent,
ie. vy +---+v, =0=v; =0 Vi, or equivalently,

av1+ -+ apv, =0(v; €Vi,v; 40) = a1 =...a, =0

If Vi,...,V,, € W are subspaces that span and are linearly independent,
then we write W = @V, i.e. every w € W can be uniquely expressed as a sum
of values v, € V,,. In this case, dimW =" dimV,,.
Say V, W are finite dimensional vector spaces over K, where dimV = m,dim W =
n. Recall that
Hom(V, W) := {linear maps ¢ : V — W}

To describe Hom(V, W), we start with bases: vy, ..., v, basis for V, wq,...,w,
basis for W. Note that any linear map is determined by ¢(v;). Conversely, we
can choose arbitrarily ¢(v1),...,d(v,) € W and get a (unique) linear map.
Write

o(v1) = ajqwy + ... aprwy

¢('U7n) = A1 W1 + .. Gy Wy,

This means that Hom(V, W) = {m x n matrices} = K™", where the matrix
above is constructed as {a;;j}. Another way to say this: a basis v1,..., v, for
V' is the same thing as an isomorphism V' — K™. Insert commutative diagram
now where canonical isomorphisms factor.

What happens if we choose a different basis v, ..., v}, for V; We get a different
matrix representation A’, i.e. write:

vy =p11v1 + -+ Pimim

’U;n = P1mV1 + - + PnmUm

An inverse of this map can be defined as well, by decomposing the v, in terms
of the v/,. Set the original m x m matrix to be A’ = A - P. Likewise, if we
choose a different basis wi, ..., w!, for W, and we can write

Wi = quiw; + -+ guioy,
to get an n X n matrix @ that is invertible. In this case, the new map is

A" = Q7 'A. In general, by choosing a different basis for both sides V, W, we
can replace the given matrix A with QAP where Q is an invertible n x n



matrix, P is an invertible m x m matrix.

Given a linear map ¢ : V. — W, where V has dimension m and W has

dimension n, start by choosing a basis v,41, ..., v, for ker(¢). Here, rank(¢) =
r. We can enlarge this basis to vq, ..., v, for V. Next, set w1 = ¢(v1),...,w, =
¢(v,), and we can complete this to a basis ws,...,w, for W. More concretely,

we defined ¢ as
prvi—w; t=1,...,7

vi—=0 j>r

I, 0

and it has matrix representation of ( 0 0

), where I,. is the r x r identity

matrix.

This implies that there are finitely many linear maps (up to isomorphism)

between two finitely dimensional vector spaces. A more detailed explanation,
can be seen through commutative diagrams where the canonical maps V =2
K™ and W = K" factor with the matrix map from K™ — K", but drawing
diagrams is hard.
You may be wondering what the point to linear algebra is since we just classified
all linear maps, but observe: if V' is a vector space, a linear map ¢ : V — V is
called an operator. For operators/automorphisms, then, the classification of
linear maps is not as immediate as what we just saw.

3 9/21/22, Wednesday

Fix a field K, and let V' be a vector space over K. Then define the dual space

V* := {linear maps V — K}
= Hom(V, K)

To write a basis for the dual space, we define the linear forms e} by ¢; — 1
and e; — 0 for j # 4, i.e., (21,...,2,) — 21. This is a basis for (K™)*, so the
isomorphism of the dual space with V' is not natural (depends on choice of basis
/ goes through K™), but we still have V' 2 V. By contrast, the isomorphism
V = (Vx)* is natural, and is defined by: v +— [(v). As an exercise, check this is
injective.

Let W C V be a subspace. Define the annihilator as

Ann(W):={leV*:l[(W)=0} CV*

Observe that linear forms on V/W < linear forms [ : V — K : {(W) = 0.
Thus, Ann(W) = (V/W)*. Also observe that if dimV = n and dimW = k,
then dim Ann(W) =n — k.

Say ¢ : V. — W is a linear map, and [ € W* (ie. | : W — K), then
log:V — K. This gives a map t¢ : W* — V*, the transpose of ¢. As an
exercise, prove that t(t¢)) = ¢.



We now relate this transpose to the idea of transpose from matrices. If you
choose a basis vq,...,v,, for V and wy,...,w, for W, then V = K™ and
W =2 K™, and so it follows that V* = K™ and W* = K™.

Suppose ¢ : V — W is a linear map and [ : W — K is a linear form.
When does the transpose, [ o ¢, equal the zero function. This happens when
ker(t¢) = {l: W — K : 1o ¢ = 0} = Ann(im(9)).

We will now talk about polynomials over a field K. A polynomial is f(x) =
ag + a1z + - + apz™ (finitely many terms, degree n or less, forms a vector
space). This defines a function K — K (obviously not linear).

First basic fact: if f(\) = 0 for some X\ € K, then, f is divisible by (z — A), in
other words, we can write f(z) = (z — A)g(z) for some g € K|x].

4 9/26/22, Monday

Wednesday: finish up operators, introduce bilinear forms

After that: multilinear algebra, more on groups, representation theory

Midterm exam: will be take-me, posted Wednesday 10/12, due Friday 10/14

Today: Brief intro to language of categories and functors, and more on operators
A category C consists of 3 things:

a collection of objects Ob(C)

for any A, B € Ob(C), a set of morphisms Mor(A, B)

a law of composition: VA, B,C € Ob(C), a map
Mor(A, B) x Mor(B,C) — Mor(A,C)
e Associativity of composition: VA, B,C, D € Ob(C) where
AsBlolp
vo(Boa)=(yop)oa

YA € Ob(C),3ids € Mor(A, A) such that YA 2 B,¢oids = ¢ and
idaod=¢

Examples The category (sets) is just the category of sets with morphisms be-
ing maps between them. A variant of these are known as pointed sets where for
all sets A and elements € A, there are objects = pairs(A, X ) with morphisms
(A,x) — (B,y) are the set of maps ¢ : S — B where ¢(z) = y.

Another example are the nested pairs which maps specific subsets to each
other A, B C A. Moreover, there is (Ab) for the category of abelian groups
(morphisms are group homomorphisms), (Vectk) for the category vector spaces
over a field K (morphisms are linear maps).

Note that there exists a forgetful functor from (gps) to (sets) which forgets
the underlying group structure.



Suppose C' is a category and A, B € Ob(C). We define the product A x B
as an object (also called A x B), together with a pair of maps A x B =2 A
and A x B =2 B, such that VT' € Ob(C) and any maps o : T — A, 3: T — B,
¢ : A x B — T so that the following diagram commutes:

T

Y

v

A+—7m1—AxB —m5— B

The sum of objects in a category is defined similarly. For any A, B € Ob(C),
define A 4+ B to be a triple:

e A+ B e ObC)
e and morphisms iy : A > A+ B,ip: B—> A+ B

such that VT' € Ob(C), and morphisms a: A - T,8: B—T,3¢: A+ B—>T
so that the following diagram commutes: Note that the sum and product in the
category of vector spaces are the same thing, the ordinary direct sum.

Let C, D be any two categories. then define a covariant functor F': C — D
to be a map Ob(C) — Ob(D) and a map VA, B € Ob(C)

Morc(A, B) 2 Morp(F(A), F(B))

The requirements are, F(aof3) = F(a)oF(B), F(ida) = idp(,). A contravari-
ant functor is the same but it maps morphisms in the opposite direction, that
is, VA, B € Ob(C)

Mor(A, B) % Mor(F(B), F(A))

Homology is a covariant functor from topological spaces to abelian groups,
and cohomology is a contravariant functor (wow so cool).

Example of a contravariant functor: let C' = Vectg, and definte the functor:
F:C—->Cby F(V)=V*and V¢ : V - W € Mor(V,W), it is true that
F(¢):=t¢: W* = V* € Mor(F(W),F(V)). Here, ‘¢ is the transpose of ¢.

Let C be a category, A € Ob(C), then we can define a functor

cLt (sets)

such that VB € Ob(C), Fa(B) = Mor(A, B) and for all moprhisms B 2, C, one
gets the map Mor(A, B) — Mor(A, C) by composing with ¢. Yoneda’s Lemma
states that A € Ob(C) is determined by the functor Fjy.

Back to operators. Let T': V' — V be an operator, then the simplest case
occurs when T is diagonalizable, i.e., 3 direct sum decomposition

V =V



such that T'(vy) = vy and T, = A -id
what we get: if K is algebraicaly closed, then 3 flag

ocvicWVc---CcV,_qCV, =V

where T'(V;) C V; (each new proper inclusion gives a new basis element). Equiv-
alently, 3 basis v1, ..., v, for V such that the matrix representation of 7" is upper
triangular.

In the diagonalizable case, V = @®xcxVy where V) = ker(T — \). This is
OK in general if we replace ker(T' — A) by gker T — A.

5 Wednesday, 9/28/22

Today: finish description of ooperators on finite dimensional vector spaces, start
bilinear forms
Coming up: multilinear algebra, more group theory, representation theory

Let V' be a vector space over a field K of finite dimension n. Let T : V — V
any operator. We have noted the following sequences of subspaces

0 C ker(()T) C ker(()TQ) c---CcV

V 2> im(()T) > im()(T%) > ...
Observe, if ker(()T™) = ker(()T™*1), then they all equal ker(T™V)VN > M <
im() (™) = im()(T™).
The generalized kernel of T is
gker(T) :={v eV :T™v =0 some m > 0}
=Uker(()T™) = ker(()T™)

One can similarly define the generalized image
gim(T") = Nim()(T™) = im(()T™)

In the special case that gkerT'= V', we say that T is nilpotent.
Key fact: If T: V — V is an operator, we have a & decomoposition

V = gker(T') @ gim(T)
= ker()(T") & im()(T")
Why? First, because dim ker()(7™)+dim im()(7T™) = n and gker(T)Ngim(7T') =
0.

Let V' be a dimension n vector space over an algebraically closed field K.
VA € K, we have the eigenspace

VO Vy:=ker()T —\)

and indeed
T is diagonalizable & V = @V}



Now define the generalized eigenspace
gVy = gker (T — \) = ker()(T — \)"

Proposition: If Ai,..., A\, € K are distinct, then gV, gV,, ..., gV, islinearly
independent, i.e, for v; € gVi,,

v1+...0, =0= v, =0V,

to see this, apply (T — \,,)" a suitable number of times, v, will be killed and
everything else will be mapped to a nonzero vector.
Theorem: For any T : V — T,

V =&rgV

T:gVy — gV
T|gv, = A+ nilpotent

We will prove this by inducting on dim V. For any eigenvalue A,
V =gker(T — \) @ gim(T — \)

The first term is just gV, and the second term is ®,£1gV,,

Observe that the proof to the above proposition holds because Yu # A, the
map T — p : gV — gV, is an isomorphism.

Note that if V' is infinite dimensional, then none of this holds, e.g., for V =
Klz] and T = & gker(T) = V and gim(T) = V.

Claim: If V is a finite dimensional vector space over a field K, andT : V — V
is nilpotent, then

V =V,
T(V,) CV,
and Jey,...,ey,, for V

T is the same map as before (which I didn’t have time to write down):

61’—)0
€9 H— €1

€3 — €y

€ng M7 Cng—1

This can be proved by induction on dim V, start with im(()7") C VA, and apply
induction hypothesis to im(()T)... same proof in Axler.

In terms of this basis, the matrix representation of T has 0 across its diagonal,
and on its superdiagonal (diagnoal directly above main diagonal) has Os and 1s,



and 0 everywhere else. In matrix form: 3 basis for V such that the matrix map
of T is in Jordan canonical form.

Sanity check: if V is of dimension n, then Hom(V, V) > 1,T,T?,... and has
dimension n? so T will eventually be the root to a polynomial after n? terms,
but we can do better (in n terms), and we have already shown this.

Say V = @V, and dim V), = m) (say: eigenvalue \ has multiplicity my),
then

(T =X | =0,

v
so T satisfies a polynomial P(T) = 0, and P is a polynomial of degree < Y m) =
dim V. This minimal polynomial is known as the characteristic polynomial .

6 Friday, 9/30/22

We will wrap up from last time. Let V be a finite-dimensional (of dimension n)
vector space over an algebraicaly closed finite field K. Let T : V' — V be any
operator. We have the decomposition

V =V

where V), = gker(T — \), i.e., T(Vy) = Vi, and T|y, = AT + nilpotent . Clearly
dim V), = m), and this is the multiplicity of the eigenvalue A. mj is the
number of As in a diagonal in UT. matrix representing 7', that is, > my = u.

Observe,
(T=NIy> =0

= set P(z) = []... he erased. Minimal polynomials, characteristic polyno-
mials, and jordan blocks and normal form and their matrices.

What if K is not algebraically closed? Then 3 algebraically closed field
L D K. Obvserve: given a vector space V over K, we can associate to it a
vector space over L. Concretely: choose a basis vy, vs, ..., v, for V.

V={aqv+ - -+e)n:c¢ e K}
WL={“ ":¢ €L}
In fact, we can define a functor
Vectg <> Vecty,

but we leave this for a further class when we have learned tensor products
(exercise: what do you need to prove to show a given construction is a functor?).

Notions like length of a vector or angles between vectors don’t make sense
over an arbitrary field K, but they are based on a construction that does:
inner product / dot product on R™. Basic idea: Given = = (z1,...,2,),y =
(y1,---,yn) € R™, we can define (z-y) = > x;y;.

10



Let V be a vector space over an arbitrary field K. A bilinear form on V is

amap V xV 5 K that is linear in each variable separately.

b(A\x,y) = \b(z,y)

b(z +2',y) = b(z,y) + b(z',y)
b(x, Ay) = \b(z,y)

b(z,y +y') = Ab(z,y) + b(=z,y)

We say that b is symmetric if b(x,y) = b(y, z) Va,y. Similarly, we say b is
skew-symmetric if b(z,y) = —b(y, z) Yz, y.
Observe that if dim K # 2, then every bilinear form is expressible as a sum

of a symmetric and a skew form.
Given b:V x V — K, then

b(vy,w) + b(wy,v)
2

b(Ul, ’LU) - b(’U}, Ul)
2

are a unique construction for the above decomposition. Exercise: prove this.
Observe that given a vector space V' over K, the set of all bilinear forms

bl (Ul, w) =

bg(vl, w)L =

B := { bilinear forms b: V xV — K}

is a vector space. We can also define Bgymm and Bgkew, and if char(K) # 2,
then we have
B = Bsymm @ Bskew

Basic fact: dim B = (dim B)”.
Suppose b : V x V — K, the fact that b is linear in the second variable —-
we get a map

V-V
v = b(v,-)

Because b is linear in the first variable, the map b is linear, that is, the map

rank(b) := rank(b)

We say that b is non-degenerate if rank(b) = n = dimV, ie., Yo # 0 €
V IweV:bw,w)=0
We get a map



that is an isomorphism. From this isomoprhism, we get dim B = n?

b(v,w) = (b(v)) (w))
We can prove this directly: choose a basis eq,...,e, for V, and for any
v,w eV, let

. (note

v =c1e1 + -+ cpen
w=dyey + -+ dpep

b(v,w) = Z c;d;b(e;, e;)
4,J

we get an isomorphism B & K™, Note that the b(e;, ej) can be identified as a
matrix representation of b w.r.t. the basis eq,...,e,, that is, we have

dy
do

bv,w) = (c1,...,cn)M | .

dn,

where M is an n X n matrix.

We can define a trilinear form (or for any number of variables) to be a
map V x V x V — K that is linear in each factor. Similar as before, we can let
T = {trilinear forms on V'}, and similarly define Tiymm, and to define Tiyew as
bilinear forms whose sign change by —1 raised to the parity of the permutation
of the elements.

Question: is it true that T' = Tiymm @ Tekew 7
Hint: no

Suppose we have a vector space V of dimension n over K, and a bilinear
form b : V xV — K. If U C V is a subspace, then define the orthogonal
complement of U as

Ut ={weV:bw,u)=0vYuecU}
= Ann (5 (u))

where b: V — V* is defined the same as before.
Note that in the “normal” setting of R™ where the inner product/bilinear
form is the dot product, it is true that for any subspace U,

V=UgU*

Note that this is not true in general. For example, if V = C2, define b(z,y) =
711 + 22y2 € C. Then for the subspace U = ((1,1)), it is true that U+ = U, so
while their dimension add up to the dimension of V, they are clearly not disjoint
so the previous direct sum decomposition of V' does not hold. We highlight this
dimension correspondence:

Am(u)={veV: Ulw)=0VueU}

12



The claim is that dim Ann(u) 4+ dim U = n We proved this before (you just need
to extend a basis of U).
To see another more general counterexample, let V = K? for any field K, and

b(x,y) = x1y2 — T2y1, then for any one dimensional subspace U C V satisfies
U=U".
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